摘要
图像分割是模式识别、图像理解、计算机视觉等领域的重要研究内容.基于模糊C均值聚类(FCM)的图像分割是应用较为广泛的方法之一,但其存在抗噪能力差、收敛速度慢等不足.本文以FCM理论为基础,提出一种基于纹理测度与自适应阈值的图像分割算法.该算法首先根据图像局部相关特性,利用Laws纹理测度提取图像特征,并进行图像的FCM初分割;然后结合Otsu准则(最大类间方差法),利用FCM自适应确定阈值,并对初分割结果进行区域合并.仿真实验表明,该图像分割算法的分割结果与人类视觉感知系统具有良好一致性,其不仅能够有效抑制背景噪声,而且提高了图像分割速度.
- 单位