摘要

主要利用2015~2020年海口市臭氧(O3)浓度资料和ERA5再分析资料,基于污染物浓度控制方程挑选出海口市O3-8h 浓度(日最大8h滑动平均)的15个关键预报因子,构建了多元线性回归模型(MLR)、支持向量机模型(SVM)和BP神经网络模型(BPNN),并对2021年海口市O3-8h 浓度进行预测和效果检验。结果表明,O3-8h 浓度与关键预报因子的相关系数绝对值主要分布在0.2~0.507之间,其中1000hPa的相对湿度(RH1000)和风向(WD1000),875hPa的经向风(v875)的相关系数绝对值超过了0.4,具有较好的指示作用。3个预报模型基本能预报出海口市O3-8h浓度冬半年偏高,夏半年偏低的变化趋势,其中BPNN模型的标准误差(RMSE)数值最小(22.29 μg·m-3)。实测值与3个统计模型预报值的相关系数从大到小排列为:0.733(BPNN)>0.724(SVM)>0.591(MLR),均通过了99.9%的信度检验。O3-8h浓度等级预报的结果检验表明,3个预报模型的TS评分均随着O3-8h浓度等级的上升而下降,而漏报率(PO)和空报率(NH)随着O3-8h浓度等级的上升而上升。SVM和BPNN模型在3个等级预报中TS评分均略高于MLR模型,特别是在轻度污染等级,TS评分还维持在70%以上,具有较好的预报性能。

全文