摘要
大气的大尺度动力学方程由Navier-Stokes方程导出的原始方程组控制,并与热力学和盐度扩散输运方程耦合.在过去的几十年里,人们从数学的角度对大气、海洋与耦合了大气和海洋的原始方程组进行了广泛的研究.许多学者的研究主要关注原始方程组在数学上的逻辑性,即方程组的适定性.笔者开始注意到研究原始方程组自身稳定性的必要性.因为在模型建立、简化的过程中不可避免地会出现一些误差,这就需要研究方程组中系数的微小变化是否会引起方程组解的巨大变化.该文运用原始方程组解的先验估计,结合能量估计与微分不等式技术,展示了如何控制水汽比,证明了大尺度湿大气原始方程组的解对边界参数的连续依赖性.