摘要
目的建立基于增强CT的影像组学模型,评估其鉴别肾透明细胞癌(ccRCC)与非透明细胞癌(non-ccRCC)的应用价值。方法将147例ccRCC及32例non-ccRCC患者随机分为训练集125例和测试集54例。将所有患者的增强CT资料导入ITK-SNAP软件,手动勾画ROI,获得16个特征,分别建立基于特征的随机森林(RF)模型和逻辑回归(LR)模型,采用ROC曲线观察模型对ccRCC的诊断效能。结果训练集RF模型诊断ccRCC的AUC为0.96(P<0.05),特异度为1.00,敏感度0.83;LR模型诊断ccRCC的AUC为0.96(P<0.05),特异度为1.00,敏感度为0.83。测试集RF模型诊断ccRCC的AUC为0.96(P<0.05),特异度为1.00,敏感度为0.89;LR模型诊断ccRCC的AUC为0.88(P<0.05),特异度为0.90,敏感度为0.77。结论基于增强CT影像组学模型可用于鉴别ccRCC与non-ccRCC;RF模型诊断价值较LR模型更高。
-
单位河北大学; 河北大学附属医院