摘要
目前基于视觉的动态头势识别算法泛化能力弱、识别率低,头戴式传感器的方法经济性、便携性差.针对以上问题,提出了一种无需头戴设备的动态头势识别算法.这种基于双流融合3D卷积神经网络的方法用头部动作生成稠密光流,并将原始数据和光流数据并行输入构建的动作特征提取器,最后进行特征融合.结果表明所提算法比人工特征提取方法和C3D模型有更高的准确率、更好的泛化能力,在无需头戴传感器的情况下有近似头戴式传感器的识别率.
-
单位自动化学院; 杭州电子科技大学