摘要
本发明公开了一种基于贝叶斯支持向量数据描述的雷达库外目标识别方法,主要可决现有技术因无法对参数提出概率分布假设而造成的识别率较低的问题。其实现步骤为:加入隐变量,对支持向量数据描述SVDD的参数提出概率分布假设,建立贝叶斯支持向量数据描述模型;生成雷达高分辨距离像训练样本集和测试样本集;对贝叶斯支持向量数据描述模型进行参数初始化,将训练样本集输入到该模型中,对模型中所有参数进行更新,当变分下界收敛时得到训练好的模型;将测试样本集中的所有样本输入到训练好的贝叶斯支持向量数据描述模型中进行目标识别,得到测试样本集所有样本的分类标签。本发明提高了对雷达高分辨距离像的识别性能,可用于雷达库外目标识别。
- 单位