摘要

为了充分挖掘电力负荷数据中的有效信息、提高超短期负荷预测精度,提出一种基于多重聚类分析(MAC)、小波分解(WD)、卷积神经网络(CNN)和多路卷积神经网络(MCNN)的超短期负荷预测模型MACWD-CNN-MCNN。通过MAC方法筛选训练集样本,并采用WD算法对负荷进行频段分解,提取负荷细节特征,然后提出了MCNN网络结构,采用CNN网络和MCNN网络分别预测高低频负荷信号,最后通过小波重构输出负荷预测值。试验仿真结果表明,与CNN-GRU模型和MAC-WD-CNN-GRU模型相比,所提超短期负荷预测模型的RRMSE、MMAE、ssMAPE均更小,具有更高的预测精度。

全文