高速铁路红层软岩路基时效上拱变形机制研究

作者:钟志彬; 李安洪*; 邓荣贵; 吴沛沛; 王科; 陈明浩; 付支黔
来源:岩石力学与工程学报, 2020, 39(02): 327-340.
DOI:10.13722/j.cnki.jrme.2019.0423

摘要

红层软岩地区高速铁路路基在运营期出现持续上拱变形,已成为当前阻碍我国高速铁路发展的又一关键因素,为揭示引起红层软岩地基时效性上拱变形机制,以西南地区某典型红层软岩深挖路堑路基上拱变形病害工点为依托,在现场工程地质与水文地质调查分析的基础上,结合基底地应力测试、红层软岩的吸水膨胀性试验和不同水理条件下的蠕变性试验结果,从地基岩体赋存的水、力环境、红层泥岩的时效性膨胀特性和水–力耦合蠕变特性角度,建立红层软岩地基分层变形机制模型,并系统分析地基短期、中期和长期上拱变形机制和特征。研究成果表明:(1)上拱区段属红层泥岩夹薄层砂岩的近水平地层结构,开挖法向卸荷引起浅层岩体微观裂隙松弛而视显,深层岩体仍为完整,地基岩体水平切向应力显著增大导致路基变形具有明显的结构效应;(2)侧向约束轴向自由下,红层泥岩吸水的时效性变形特征与其岩性及结构特征有关;(3)红层泥岩在低应力状态下即表现出典型的三阶段蠕变变形特征,且轴向应力越小,蠕变应变比越大;(4)水–力耦合作用下红层泥岩蠕变特性更为显著,大量级卸荷情况下上拱蠕变显著增大,蠕变稳定持续时间增长;水汽–力耦合作用下仍会出现显著的蠕变变形,蠕变稳定持续时间更长,总蠕变应变相对减小;(5)根据不同层位岩体的变形机制,将红层软岩地基划分为大气影响层(C1)、水汽–力耦合变形层(C2)、水–力耦合变形层(C3)和水–力耦合封闭层(C4)。路基短期变形主要由C1层岩体引起、中期变形由C3和C4层岩体引起、长期变形由C2层岩体引起。研究成果可为红层软岩地区高速铁路路基时效性上拱变形风险评估、预测及工程控制措施的设计提供理论支撑或参考。