针对在黄瓜种植过程中,不能及时观察出病害种类以及不合理地使用药物防治而导致减产或死亡的问题,提出了基于卷积神经网络的黄瓜病害识别方法。通过使用手机拍照的方法采集带有病害特征的样本图片,进行图像增强处理,制作了黄瓜叶面病害数据集,并研究AlexNet、VGG-16和ResNet50三种不同深度网络模型的病害识别效果,通过设计不同方案进行模型训练,找出训练效果最优的网络模型并进行病害图片检测。结果表明,系统能够满足预期的黄瓜病害识别要求,具有较高的识别准确率。