基于GAN的遥感图像协同数据增强方法

作者:邵利军; 任彦*; 高晓文; 戚忠涛
来源:遥感信息, 2023, 38(04): 80-86.
DOI:10.20091/j.cnki.1000-3177.2023.04.010

摘要

针对基于深度学习的分类模型在少样本训练时所遭受的梯度消失、过拟合问题,结合DCGAN和SRGAN特性,提出一种抑制过拟合、提升图像生成质量的DS-GAN协同数据增强算法。通过改进DCGAN生成新的图像,使用改进SRGAN对其进行超分辨率重构,二者协同得到新的超分辨率图像。首先,提出一种软标签函数,代替DCGAN原始固定标签;其次,引入空洞卷积残差块作为SRGAN判别器主结构,同时加入CBAM注意力机制实现权重的再分配;最后,在SRGAN判别器中引入自适应平均池化,降低网络参数量。实验结果表明,使用标准数据集AID和RSOD,经MobileNet V2分类网络进行测验,DS-GAN数据增强方法相较于常规增强和DCGAN增强方法有明显提高。在AID数据集上,准确率分别提升8.01%、9.49%。在RSOD数据集上,准确率分别提升4.76%、1.4%。

全文