摘要

为解决清漂船在复杂水面背景下对漂浮物体积较小或被遮挡的检测与跟踪问题,提出了一种基于视觉的水面背景下目标检测与跟踪算法,通过利用YOLO改进的多粒度特征融合方法使得模型在最终检测时所提取的特征向量考虑更多底层的特征,并引入K邻域搜索感兴趣区域模块,与长短期记忆神经网络(long-short term memory, LSTM)相结合,弥补了卷积神经网络的时序关联性差的缺陷,根据目标当前帧语义特征和运动特征预测下一帧中目标所在位置,能够更快地提取目标的特征,并且有效地去除复杂背景的干扰。实验结果表明:该算法的跟踪平均成功率、平均准确率和平均速度分别为57.1%、71.1%、45.4帧/s。较好解决因被检测目标过小的问题,提升在跟踪目标被遮挡的情况下的跟踪性能。