摘要
针对目前无监督域自适应方法对噪声和域偏移非常敏感,提出一种基于深度条件适应网络的标签转移算法。利用Wasserstein距离来度量区域分布差异,有效解决了当邻域差异较大时梯度消失问题,从而获得更好的域适应性能。提出一种条件适应策略,以减少域分布差异,解决边缘适应方法中经常忽略的类别不匹配和类别先验偏差。进一步引入一种标签相关传递算法预测伪目标标签,提升算法的准确性和实用性。对标准领域应用基准进行全面的实验,实验结果表明,该算法能够有效提升对噪声和域偏移的鲁棒性,进一步强化了算法的自适应性能。
-
单位许昌学院