摘要

传统的语音文档分类系统通常是基于语音识别系统所转录的文本实现的,识别错误会严重影响到这类系统的性能。尽管将语音和识别文本融合可以一定程度上减轻识别错误的影响,但大多数融合都是在表示向量层面融合,没有充分利用语音声学和语义信息之间的互补性。本文提出融合声学特征和深度特征的神经网络语音文档分类,在神经网络训练中,首先采用训练好的声学模型为每个语音文档提取包含语义信息的深度特征,然后将语音文档的声学特征和深度特征通过门控机制逐帧进行融合,融合后的特征用于语音文档分类。在语音新闻播报语料集上进行实验,本文提出的系统明显优于基于语音和文本融合的语音文档分类系统,最终的分类准确率达到97.27%。

全文