摘要
模糊C-均值(Fuzzy C-means,FCM)算法的初始聚类中心是随机确定的,因此存在着易受初始聚类中心和隶属度矩阵影响,可能收敛到局部极小值的缺点,从而影响图像分割效果。针对此问题,将粒子群优化(PSO)算法与遗传算法(GA)相结合更新种群和搜索最优点,进行全局搜索优化FCM初始聚类中心,实现了基于PSO和GA相结合的模糊C-均值图像分割算法,并用于分割乳腺钼靶图像。实验结果表明,提出的优化算法具有更好搜索全局最优解的能力,可以提高分割精度,得到更好的图像分割结果。
-
单位长春理工大学; 生命科学技术学院