摘要
建筑与工业、交通并列成为我国三大“耗能大户”,公共楼宇能耗巨大但节能潜力不可估量,监测其负荷特征挖掘节能潜力应用前景广阔。非侵入式负荷监测与分解作为大数据环境下面向智能电网配电侧的一种高级应用,可通过电力端口信息挖掘用户用电行为,但传统算法主要针对家庭用户,且存在功率跟踪性差,训练时间长等问题。为此,文章面向楼宇用户提出一种基于深度学习和迁移学习的负荷分解模型。该模型将3种神经网络:多层感知器神经网络(multi-layer perceptron neural networks,MLP)、卷积神经网络(convolutional neural network,CNN)、长短时记忆网络(long short-term memory,LSTM)模块化并联连接,并融合网络特征,通过再学习模块重新学习融合特征与结果的映射关系;针对新楼宇数据量不足的问题,将特征学习网络模块特征冻结,运用迁移学习重新训练网络,在确保模型精度的同时降低深度学习所需数据量和训练时间。最后利用真实楼宇负荷数据划分出3种应用场景,利用所提模型开展分解应用并与3种传统深度学习算法分解结果作对比,结果表明:基于深度学习和迁移学习的楼宇负荷分解模型准确率高,泛化能力强,可快速有效地实现楼宇负荷分解。
- 单位