摘要

基于TIGGE资料中的欧洲中期天气预报中心、英国气象局、美国国家环境预报中心、韩国气象厅和日本气象厅2015年1月1日—9月30日中国及周边地区地面2 m气温24~168 h集合预报资料,利用长短期记忆神经网络(Long Short-Term Memory,LSTM)、浅层神经网络(Neural Networks,NN)、滑动训练期消除偏差集合平均(BREM)和滑动训练期多模式超级集合(SUP)方法对2015年9月5—30日26 d预报期进行集成预报试验。结果表明,BREM对5个单模式进行等权集成,预报结果易受预报效果较差模式的影响,整体预报技巧略低于单个最优模式ECMWF的预报技巧。其中在新疆南部,等权集成后的预报技巧更低。SUP的预报结果比所有单个模式预报更为准确。在144 h之前,SUP的误差明显小于ECMWF的预报误差,但随预报时效增加,误差增长幅度增大。NN对地面气温的预报效果与SUP的预报效果相当。LSTM整体预报效果最好,特别是在预报时效较长(超过72 h)时,比其他方法预报准确率明显提高。LSTM神经网络方法明显改进了我国西北、华北、东北、西南和华南大部分地区的气温预报,但在南疆部分地区误差较大。