摘要

当前去模糊方法只利用图像单一的稀疏特性作为先验信息,忽略了伪边缘(如振铃瑕疵)对模糊核估计的影响,导致其去模糊性能不佳。本文充分利用复杂结构图像的先验信息,设计了振铃约束下的全变差正则化图像去模糊算法。首先,利用多分辨率图像金字塔策略建立多层图像模型,通过对比模糊图像和潜在清晰图像来获得振铃先验信息。其次,将振铃正则约束项融入全变差方法,构建多正则项去模糊模型,然后利用变量分离法将去模糊模型转化为多函数优化问题。最后,利用一阶原始对偶算法,根据低分辨率到高分辨率的顺序,对模糊核和原始图像完成计算,获取重构目标。实验结果表明:较当前图像去模糊技术而言,所提算法具备更为理性的去模糊效果,所复原的图像呈现出更高的峰值信噪比和结构相似度,可以更好地保持图像边缘与纹理信息。