基于Hellinger-Reissner变分原理,通过构造合适的应力场函数使其能更方便和更准确地得到节点上的应力值,同时结合广义有限元构造广义位移插值的方法,在不提高单元节点数目的前提下提高位移场函数的阶次,从而提高其求解精度.这种方法能同时灵活地构造应力场和位移场,在同等精度条件下能占用较少内存和求解更少的方程数目,计算结果也显示了这种方法的有效性和很高的计算精度.