摘要

针对旋转机械故障数据的多类别、高维复杂特性导致的分类困难问题,提出一种基于局部平衡判别投影(LBDP)的故障数据集降维方法。从时域、频域和时频域多个角度提取转子振动信号的混合特征,构建原始高维故障特征集;通过LBDP选择出其中最能反映故障本质的敏感特征子集;将得到的低维特征子集输入到K近邻分类器(KNN)中进行故障模式辨识。通过一个双转子系统的振动信号集合验证了所提出方法的有效性,证明了该方法能够全面地提取出局部判别信息,使故障类别之间的差异性更清晰。