摘要
消费者信心指数等宏观经济指标具有时间上的滞后效应和动态变化的多维性,不易精确预测。本文基于机器学习长短时间记忆(Long Short-Term Memory,LSTM)神经网络模型,结合大数据技术挖掘消费者信心指数相关网络搜索数据(User Search,US),进而构建一种LSTM&US预测模型,并将其应用于对我国消费者信心指数的长期、中期与短期的预测研究,同时引入多个基准预测模型进行了对比分析。结果发现:引入网络搜索数据能够提高LSTM神经网络模型的预测性能与预测精度; LSTM&US预测模型具有较好的泛化能力,对不同期限的预测效果均较稳定,其预测性能与预测精度均优于其他六种基准预测模型(LSTM、SVR&US、RFR&US、BP&US、XGB&US和LGB&US);预测结果显示本文提出的LSTM&US预测模型具有一定的实用价值,该预测方法为消费者信心指数的预测与预判提供了一种新的研究思路,丰富了机器学习方法在宏观经济指标预测领域中的理论研究。
- 单位