摘要

基于软件大数据的自动化缺陷检测模型已成为缺陷发现的重要工具.针对软件大数据中,被准确标定的缺陷样本稀少,且漏标、误标率高,导致现有机器学习数据平衡优化方法易使噪声加剧、分类边界模糊等问题,提出一种稳健边界强化GMM-SMOTE软件缺陷检测方法.该方法利用高斯混合聚类将软件集合划分为多簇,基于簇内类别比进行可靠样本筛选并且通过后验概率实现边界识别,用以指导完成加权数据平衡,最后利用平衡优化数据构建软件缺陷检测模型.在NASA多个公开数据集上的实验结果表明,GMM-SMOTE可实现噪声抑制、边界强化的数据平衡,有效提高了软件缺陷识别效果,实际应用价值大.

全文