软测量仪表在实际应用中往往存在预测精度低、缺乏预测精度信息等问题。基于多模型方法的软测量仪表通过子模型来描述局部变化,可以有效提高软测量仪表预测精度。在本研究中,高斯过程回归(GPR)模型因其预测方差能够反映预测精度信息特性,被用于构建局部子模型。同时,基于不确定性推理方法,本文提出了基于高斯过程回归预测方差的多模型融合策略。最后,将所提方法应用于工业红霉素发酵过程数据。结果表明,与其他高斯过程回归方法相比较,所提出方法预测精度更高,95%置信区间范围更小。