针对梯度方向直方图(HOG)算法采用网格密集的大小统一的细胞单元提取行人特征,导致大量高维度的冗余特征问题,提出了低维度特征进行行人检测的算法,建立了以空间金字塔为核心的低维度特征目标模型.该模型通过角点检测算法获取目标轮廓信息,以角点为参考点取16* 16像素区域内的梯度方向直方图作为行人特征,利用空间金字塔模型对图像进行分决,按块提取维数统一的特征向量并串联起来形成最终的特征向量.实验结果表明了该方法的准确性和有效性.