摘要
为科学合理地对船舶进行安全管理,就船舶安全问题的特点,建立带有海洋气象特征的事故数据集。针对数据类别不均衡问题,在比较多种机器学习算法后,用具有代价敏感的损失函数改进XGBoost算法求解。结果表明:改进后的模型AUC值和预测正确率有了明显提高,可达0.708 5和81.51%。相比于其他方法,模型的可解释更高,能更好地揭示风险因素与船舶风险之间的交互关系。最后,对提取到的载重吨、航行海域和船员数等重要风险因素进行偏依赖关系分析,针对性地提出管理意见并通过实例加以说明,为航运公司及海事局等相关组织提供决策参考。
- 单位