量化的城市街区品质评价是街区设计规划的重要依据,图像数据是街区品质评价模型的重要维度。目前的研究中存在街区品质标注成本较高的问题。因此本文改进基于子空间的小样本学习方法,对街区卫星图像特征进行奇异分解生成类别子空间,并将训练集子空间参数继承到街区品质评估模型中。实验结果表明,在小样本街区品质评估问题上,本文方法相比传统小样本学习方法的正确率提高约30%,一致性提高约15%。