红外图像具有动态范围窄、对比度低、易受噪声污染等缺点,传统红外图像去噪算法在去除噪声的同时也滤掉了图像细节。提出了一种基于稀疏表示的红外图像去噪新方法。该方法首先将原始红外图像进行聚类分析,再将每一聚类子图像分解成字典,由稀疏系数矩阵重构去噪后的红外图像。实验结果表明,该方法相比于传统红外图像去噪算法,能更好地保留图像的细节信息,视觉效果比较理想。