摘要

植物病害是造成农作物减产的主要原因之一。针对传统的人工诊断方法存在成本高、效率低等问题,构建了一个自然复杂环境下的葡萄病害数据集,该数据集中的图像由农民在实际农业生产中拍摄,同时提出了一个新的网络模型MANet,该模型可以准确地识别复杂环境下的葡萄病害。在MANet中嵌入倒残差模块来构建网络,这极大降低了模型参数量和计算成本。同时,将注意力机制SENet模块添加到MANet中,提高了模型对病害特征的表示能力,使模型更加注意关键特征,抑制不必要的特征,从而减少图像中复杂背景的影响。此外,设计了一个多尺度特征融合模块(Multi-scale convolution)用来提取和融合病害图像的多尺度特征,这进一步提高了模型对不同病害的识别精度。实验结果表明,与其他先进模型相比,本文模型表现出了优越的性能,该模型在自建复杂背景病害数据集上的平均识别准确率为87.93%,优于其他模型,模型参数量为2.20×106。同时,为了进一步验证该模型的鲁棒性,还在公开农作物病害数据集上进行了测试,该模型依然表现出较好的识别效果,平均识别准确率为99.65%,高于其他模型。因此,本文模型具有实际应用潜力。