摘要

变化环境下径流的波动不断加大,给径流的精准预报带来新的挑战。基于"分解-合成"策略的混合径流预报模型来提高预报精度是当前研究的热点之一。以往研究聚焦在单一的混合预报模型而忽视了它们的适用性研究。基于此,以渭河流域为例,在优选多元线性回归(MLR)、人工神经网络(ANN)和支持向量机(SVM)单一预报模型的基础上,分别基于经验模态分解(EMD)、集合经验模态分解(EEMD)和小波分解(WD)构建了多种混合模型,并融合了大气环流异常因子的信息。结果表明:(1)SVM模型预测精度高于ANN和MLR;(2)混合预测模型预测精度均高于单一模型,混合模型中WD-SVM的预测精度优于EMD-SVM和EEMD-SVM;(3)融合大气环流异常因子后WD-SVM模型预测精度最高,对极值预报精度的提高较为明显。