摘要

针对小时间尺度网络流量预测中的复杂性、非线性和高度自相似性等问题,提出使用一种改进模拟退火法优化的相关向量机(PSA-RVM)来解决网络流量预测问题。对网络流量时间序列进行相空间重构形成训练样本集,通过改进模拟退火法优化相关向量机的超参数,并构建网络流量预测模型。此外,通过实例进一步分析超参数对于相关向量机预测性能的影响。实例表明,PSA-RVM预测模型的预测精度、稳定性都优于RVM模型和PSO-SVR模型。