摘要

针对PSO聚类算法需要预定聚类中心个数的问题,提出一种变维搜索解空间的量子粒子群优化聚类算法.该算法采用量子编码的方式实现双链并行搜索,加速寻优过程,避免了粒子在解空间边界过分聚集;设计了幅角相位旋转算子和变异算子,使幅角相位依变概率进行变异,提高了粒子群的多样性;在迭代过程中,动态更新了聚类中心的数量,使算法能够在不同维度的解空间中寻优.仿真实验表明,该算法的收敛速度和聚类精度得到一定的改善.

  • 单位
    电子工程学院