摘要
起重机攀爬机器人是一种代替人力检测起重机的机械设备。为解决起重机攀爬机器人自动寻路的车道识别问题,文中设计了一种针对起重机金属结构特点优化,将MobilenetV2作为特征提取部分与Unet网络相结合的M2-Unet卷积神经网络。用攀爬机器人在门式起重机上采集1 979张图像数据,由专业标注软件Labelme制作成数据集进行训练与测试,并使用其他2种主流的语义分割网络在相同的数据集上作对比实验。实验结果表明,相较于其他2种图像分割网络,改进的M2-Unet卷积神经网络的分割准确率最高;M2-Unet网络对测试集479张图片的平均识别准确率在96%以上,平均运行时间远小于0.5 s,能同时满足起重机攀爬机器人车道识别任务的实时性和精度要求。
- 单位