摘要
压缩感知是近年来出现的采样和信号处理方法,它利用了信号中普遍存在的稀疏特性,从而可以以远低于奈奎斯特频率的采样速率采集压缩样本,并依概率恢复得到真实信号。结构振动信号具有一定的稀疏性。对其进行压缩采样并进行信号重构,离散傅里叶原子的频率往往与信号实际频率不匹配,造成频率泄漏,降低信号重构精度。针对离散原子库存在的缺陷,采用Polar插值对正交匹配追踪(Orthogonal Matching Pursuit,OMP)算法进行了改进。以OMP算法选择的最优原子为基础,利用Polar插值在最优原子临近构建频域连续原子库,构建了信号重构的优化模型,通过凸优化算法获得实际频率的最优估计。改进算法以较小的计算量实现对OMP算法得到的离散原子频率的修正。通过对结构振动的数值模拟和对模型试验压缩信号的重构,结果表明,与常规算法相比,改进算法可有效提高信号重构精度,特别是在压缩观测值数量较少的情况下,精度提升效果更加明显。
-
单位土木与环境工程学院; 哈尔滨工业大学(深圳)