摘要

浮选工况是浮选操作的重要判断依据,如何准确地识别浮选工况对浮选性能的提升有重要意义。基于机器视觉方法是浮选工况识别的主流方法,通常采用大数据技术在浮选工况数据集上建立浮选表层泡沫特征与浮选工况之间的关系模型,工况识别效果与工况数据集密切相关。一旦出现数据集中未包含的新工况,难以获得满意的识别效果。为此,针对当前大部分工况识别方法自适应性不足的问题,以锌精选为例,提出一种基于多特征宽度学习的锌浮选工况识别方法,以增量学习方式自适应新出现的工况。首先,根据多特征的不同特性,构建基于多特征宽度学习的锌精选工况识别模型;然后,在浮选状态变化和精选槽故障导致模型识别准确率降低时,通过拓宽特征层、增强层以及输出层的方式调整网络结构以进行增量学习。试验结果表明,基于多特征宽度学习系统的锌浮选工况识别方法具有良好的工况自适应性能,应用价值良好。

全文