摘要

针对卷积神经网络在进行图像分类时,存在单通道提取特征不充分和收敛慢等问题,提出一种改进的LeNet-5深度卷积神经网络模型。该模型对通道数量、层次结构等进行了改进,并设计局部误差结构,利用算法来增加局部误差产生数量和层间权值的调整次数。实验表明,与传统的LeNet-5网络相比,所提出模型收敛速度更快和分类准确率更高。