摘要
为实现作物叶片气孔的自动识别与快速计数,该研究采用卷积神经网络中高计算效率的YOLOv3算法,开发了一种全自动气孔识别和计数解决方案。该算法优化了物体检测性能,可准确识别显微图像中的气孔。其中,对指甲油印迹法获得照片的气孔检测精确率、召回率和F1值分别为0.96,0.98和0.97,便携式显微镜拍摄法照片气孔检测精确率、召回率和F1值分别为0.95,0.98和0.96,具有很好的鲁棒性。该算法检测速度快,可实现对30帧/s的视频文件进行快速气孔识别,实现了实时检测。此外,采用拍摄的小麦叶片照片进行训练得到的气孔识别模型,还可同时实现对大麦、水稻和玉米等单子叶作物叶片气孔的识别,其中,大麦的检测精确率、召回率和F1值分别为0.94,0.83和0.88;水稻的检测精确率、召回率和F1值分别为0.89,0.42和0.57;玉米的检测精确率、召回率和F1值分别为0.91、0.76和0.83;显示出模型良好的泛化能力。
-
单位农业部; 南京农业大学