摘要
目标识别是合成孔径雷达(Synthetic Aperture Radar,SAR)图像解译的重要步骤。鉴于卷积神经网络(Convolutional Neural Network,CNN)在自然图像分类领域表现优越,基于CNN的SAR图像目标识别方法成为了当前的研究热点。SAR图像目标的散射特征往往存在于多个尺度当中,且存在固有的噪声斑,含有冗余信息,因此,SAR图像目标智能识别成为了一项挑战。针对以上问题,本文提出一种多尺度注意力卷积神经网络,结合多尺度特征提取和注意力机制,设计了基于注意力的多尺度残差特征提取模块,实现了高精度的SAR遥感图像目标识别。该方法在MSTAR数据集10类目标识别任务中的总体准确率达到了99.84%,明显优于其他算法。在测试集加入4种型号变体后,10类目标识别任务中的总体准确率达到了99.28%,验证了该方法在复杂情况下的有效性。
- 单位