摘要
目的探讨迁移学习方法对乳腺良恶性肿瘤超声图像分类的价值。方法回顾性分析经病理证实的447例乳腺肿瘤的超声声像图,采用主成分分析法对原始图像进行分析提取;在Matlab 7.0软件中编程实现迁移学习,将量化的图像特征作为输入数据,利用迁移学习对乳腺良恶性肿瘤进行智能分类。结果乳腺恶性肿瘤的边缘粗糙度、坚固度、邻域灰度差矩阵粗糙度、肿瘤后方与周围区域回声差异及水平方向高频分量和垂直方向低频分量的直方图能量均明显高于良性肿瘤(P均<0.05)。超声和迁移学习方法诊断乳腺恶性肿瘤的敏感度分别为96.21%(127/132)和96.04%(97/101),特异度为66.35%(209/315)和98.49%(196/199),准确率为75.17%(336/447)和97.67%(293/300)。结论超声图像特征定量化可为识别良恶性乳腺肿瘤提供客观的量化参数;迁移学习可有效对乳腺良恶性肿瘤的声像图进行分类。