摘要
标记传播是使用最广泛的半监督分类方法之一。基于共识率的标记传播算法(Consensus Rate-based Label Propagation,CRLP)通过汇总多个聚类方法以合并数据各种属性得到的共识率来构造图。然而,CRLP算法与大多数基于图的半监督分类方法一样,在图中视每个标记样本都同等重要,它们主要通过优化图的结构来提高算法的性能事实上,样本不一定是均匀分布的,不同的样本在算法中的重要性是不同的,并且CRLP算法容易受聚类数目和聚类方法的影响,对低维数据的适应性不足。针对这些问题,文中提出了一种基于加权样本和共识率的标记传播算法(Label Propagation Algorithm...
- 单位