摘要

微地震初至精确拾取是目前微地震监测关键环节之一,传统的人工拾取方法耗时长、效率低,在实际应用中容易导致无法及时预警等问题。近年来,基于深度学习的长短期记忆网络模型(LSTM)常用于微地震初至拾取,但在低信噪比环境下拾取准确率较低,且忽视了微地震数据中相邻道初至之间的关联性。针对上述问题,将微地震初至发生前、后看作是图像二分类问题,提出了一种应用图像语义分割网络的微地震事件识别和初至自动拾取方法。应用在矿井中采集的实际微地震数据进行实验,结果表明,对包含岩石破裂、工程爆破等多类型微地震事件,该方法的识别准确率较现有的深度学习方法明显提高,平均拾取误差大幅降低,特别是低信噪比数据的平均拾取误差远小于LSTM法,因而具有良好的实际工程应用价值。

全文