摘要
由于网络训练不稳定,基于生成对抗网络(GAN)的图像超分辨率重建存在模式崩溃的现象。针对此问题,提出了一种基于球形几何矩匹配与特征判别的球面双判别器超分辨率重建网络SDSRGAN,通过引入几何矩匹配与高频特征判别来改善网络训练的稳定性。首先,生成器对图像提取特征并通过上采样生成重建图像;接着,球面判别器将图像特征映射至高维球面空间,充分利用特征数据的高阶统计信息;然后,在传统判别器的基础上增加特征判别器,提取图像高频特征,重建特征高频分量和结构分量两方面;最后,对生成器与双判别器进行博弈训练,提高生成器重建图像质量。实验结果表明,所提算法能有效收敛,其网络能够稳定训练,峰值信噪比(PSNR)为31.28 dB,结构相似性(SSIM)为0.872,而与双三次差值、超分辨率残差网络(SRResNet)、加速的卷积神经网络超分辨率(FSRCNN)、基于GAN的单图像超分辨率(SRGAN)和增强型超分辨率生成对抗网络(ESRGAN)算法相比,所提算法的重建图像具有更加逼真的结构纹理细节。所提算法为基于GAN的图像超分辨率研究提供了球形矩匹配与特征判别的双判别方法,在实际应用中可行且有效。
- 单位