摘要

目的为改善摄像机间接标定采样不全、模型表达模糊问题,实现小视场下检测视域完备采样,提出一种基于双目系统全视域采样的支持向量机(SVM)标定方法。方法该方法利用六角晶格标定板靶点序号可读特点为基础,采集整个双目系统有效视域中检测点的视差坐标、世界坐标并建立完备的样本集。选取SVM对该样本集进行训练,将SVM算法得到的模型参数代入其决策函数中进行求解,获得公式化的标定模型。由于六角晶格标定板的四角和中心分布了5个互为非中心对称的多边形,可在标定板部分区域被采集的情况下获取标定板位姿信息,进而读取采集的各靶点序号。通过上下移动标定板,利用HALCON算子获取图像中各靶点的序号,建立双目视觉系统检测区域的完备样本集。最后,利用SVM算法训练样本获得标定模型,可以明确表达出标定模型的数学形式。结果与传统采样建立的模型进行对比分析,实验结果表明该方法建立模型的标定误差减小了24.51%,降低了标定模型在传统方法未采样区域的标定误差,证明了该方法的可行性。结论提出一种基于双目系统全视域采样的支持向量机标定方法,通过非中心对称的多边形确定标定板上靶点的序号,实现双目视觉系统检测视域的完备采样。实验结果表明该方法提高了摄像机间接标定的精度,具有良好的适用性和鲁棒性,适用于小视域内双目视觉系统的间接标定。