摘要

煤矸石检测中存在样本间特征差异小、目标密集等问题,导致现有煤矸石检测方法精度不高且实时性较差。针对该问题,提出了一种基于CBA-YOLO模型的煤矸石检测方法。CBA-YOLO模型以速度较快、精度较高的YOLOv5m为基础模型,在YOLOv5m的Backbone中加入卷积块注意力模块(CBAM),通过串联空间注意力模块和通道注意力模块,在聚焦特征差异的同时降低数据维度,提高煤矸石检测性能;在Neck部分采用双向特征金字塔网络(BiFPN)结构,通过融合不同尺度的特征提高模型计算效率,从而提升煤矸石检测速度;在Prediction部分采用Alpha-IoU函数作为损失函数,通过设置权重系数加速对高置信度目标的学习,进一步提高煤矸石检测精度。实验结果表明:CBA-YOLO模型对煤矸石的平均检测精度达98.2%,比YOLOv5模型提高了3.4%,检测速度提升了10%;CBA-YOLO模型的鲁棒性更强,可有效避免漏检、误检和重叠现象。

全文