摘要

从基于云角色的分类思想出发,利用星载毫米波雷达探测资料提取云的特征参数,建立支持向量机(support vector machine,SVM)模型实现云的分类。通过与BP(back propagation)网络模型的分类结果进行对比,发现两种模型都具有较好的分类能力,但SVM模型的识别准确率更高,计算速度更快。基于CloudSat资料的云分类实例表明,SVM模型的分类结果与CloudSat数据处理中心(Data Processing Center,DPC)发布产品具有很好的一致性。

  • 单位
    中国人民解放军陆军工程大学