摘要

PM2.5已成为人群健康的重要威胁之一,科学精准的暴露评估是PM2.5风险防控的前提,为提升PM2.5暴露精准评估,本文利用土地利用数据、道路数据、气象数据等构建PM2.5土地利用回归反演模型,实现了2013年12月1日-2014年2月8日(冬季)广佛都市区PM2.5时空动态演变监测,在此基础上将PM2.5反演结果与人口密度数据耦合,分别从PM2.5污染浓度与人口加权PM2.5浓度2个方面,评估广佛都市区PM2.5污染暴露风险。研究结果表明:①土地利用回归模型能够较好的反映研究区域内PM2.5的空间分布特征,R2大于0.78;②2013年12月1日-2014年2月8日,广佛都市区PM2.5浓度平均值呈现波动变化趋势,研究时段内,最高平均浓度为97.91μg/m3(12月29日-1月11日),最低平均浓度为53.40μg/m3(1月26日-2月8日),全时段PM2.5浓度超WHO健康标准的面积占比达99.8%;③广佛都市区PM2.5的空间分布具有异质性规律,其高值区分别位于广州市天河区、越秀区、番禺区北部、花都区北部及佛山市禅城区、南海区中部、三水区中部,低值区主要位于广州市白云区、番禺区东南部及佛山市顺德区南部。人口加权暴露风险存在2个高值中心,分别位于广州市和佛山市的主城区;④耦合人口加权模型前后,广佛都市区PM2.5暴露风险高风险区空间分布发生变化,未考虑人口加权模型时,广佛深高值区较为分散,主要位于南海区、天河区、越秀区、禅城区,考虑人口加权模型后,高值区更加集中于广州市和佛山市的主城区。