摘要

针对在3D(three-dimension)增材印花产品的自动化生产中各工艺参数对产品质量影响较大,而产品质量难以实现数字化调控的情况,利用BP(back propagation)神经网络算法建立3D增材印花产品质量的预测模型,通过粒子群算法优化神经网络的初始阈值和权值,进一步提升神经网络的预测精度,实现多工艺参数影响下产品质量的数字化预测。试验结果表明,粒子群算法优化后的神经网络模型的油墨转移率预测误差基本稳定在0.02以内,相比优化前预测精度提高75%。该模型在实际应用中具有一定的准确性和可行性,可缩短工艺开发流程,降低企业生产成本,在实际生产中具有一定的借鉴意义。