摘要
【目的】对在线健康社区用户进行精准画像并准确预测其在社区中的参与情况,有助于社区管理者早期识别流失用户,并做出个性化挽留措施。【方法】构建多维度用户画像标签体系,采用统计分析、社会网络分析、自然语言处理技术、LDA主题聚类实现指标计算与可视化;将用户画像标签数据作为用户流失预测的模型输入,构建了基于滑动窗口的用户流失实时预测模型。【结果】以华夏中医论坛的真实数据进行实证研究,为9 918个用户生成了多维度画像标签,构建并比较多种机器学习算法对用户流失的预测效果,结果显示Gradient Boosting算法效果最佳,F1值达到88.77%。【局限】未在更多在线健康社区中应用,用户数据量较少。【结论】本研究提出了一种依据用户在线交互行为特征实现多维度用户画像标签计算的方法,并验证了用户画像在用户流失预测中的应用可行性。
- 单位