摘要

随着人工智能和大数据的发展,各种场景中对异常声音识别的需求日益增长,基于人工智能的声音识别技术正在兴起并被高度重视。现行主流的异常声音识别算法多为浅层机器学习模型结构,对异常声音的识别率较低,且识别的声音类型单一。为了有效识别异常声音,提出一种基于梅尔频率倒谱系数(Mel-frequency cepstral coefficient, MFCC)和卷积神经网络(convolution neural network, CNN)的环境声音识别算法,对各类异常声音进行采集和有效识别,并及时反馈声音状态,为各类声识别应用场景提供精细化管理技术手段。结果表明:提出的算法对5类场景下环境异常声音的识别率得到极大提高,适用于更广泛的声学场景,具有明显的优势。