摘要
针对多传感器高速多机动目标的跟踪问题,提出一种多传感器交互式贪婪势概率假设密度(MS-IMMGreedy-CPHD)滤波器.该滤波器在预测阶段,通过交互式多模(IMM)算法对势概率假设密度(CPHD)滤波中目标的状态、势分布和运动模型同时进行预测;在滤波的更新阶段,利用贪婪(greedy)量测划分机制选取多传感器量测子集和拟分区,并通过拟分区量测子集对不同模型下CPHD预测的目标状态和势分布以及模型进行交互式更新.仿真结果表明,所提出MS-IMM-Greedy-CPHD滤波能够对高机动多目标进行稳定有效的跟踪,相较于多传感器势概率假设密度(MS-CPHD)滤波,跟踪结果的OSPA误差更小且势估计更加准确.
- 单位