摘要

针对DF4型内燃机车轮对轴承不同故障状态的判别问题,提出了一种基于复合多尺度加权排列熵(Composit multiscale weighted permutation entropy, CMWPE)和自适应进化极限学习机(Self-adaptive evolutionary extreme learning machine, SaE-ELM)的机车轮对轴承故障识别方法。CMWPE基于复合粗粒化和加权排列熵的思想,能很好地区分信号的不同模式。SaE-ELM通过自适应进化算法对极限学习机的输入权重、隐含层参数和输出权重进行优化,解决了ELM随机选取网络参数的局限性,提高了网络的泛化性能。计算机车轮对轴承不同健康状态下振动信号的CMWPE,利用SaE-ELM识别轴承所属故障类型及故障程度。在机务段的JL-501轴承检测台上采集了7种不同健康状态的轮对轴承试件的振动信号数据。结果表明:CMWPE特征提取效果优于MPE和MWPE;SaE-ELM模式识别效果优于参数不经优化的ELM。所提方法能够有效诊断机车轮对轴承的不同故障,且故障识别率达到100%。

  • 单位
    华东交通大学机电与车辆工程学院

全文