摘要

交通流通常具有复杂时空关联性,且易受天气、速度等外部因素的影响。为提高高速公路关键节点交通流预测的准确性,设计一种基于ConvLSTM网络且融合时空关联性和外部因素的交通流预测模型——STE-ConvLSTM。构建交通流、速度、天气时空矩阵,将其延深度方向堆叠,通过滑动窗口模型将其处理为类图像时间序列数据,利用ConvLSTM网络提取交通流的时空关联性和外部因素特征;利用卷积层实现交通流预测多变量多步输出。实验结果表明,相较于传统的交通流预测模型,该模型在交通流多步预测方面的预测准确度有所提升。